Reducing the sensitivity to nuisance parameters in pseudolikelihood functions
نویسندگان
چکیده
In a parametric model, parameters are often partitioned into parameters of interest and nuisance parameters. However, as the data structure becomes more complex, inference based on the full likelihood may be computationally intractable or sensitive to potential model misspecification. Alternative likelihood-based methods proposed in these settings include pseudo-likelihood and composite likelihood. We propose a simple adjustment to these likelihood functions to reduce the impact of nuisance parameters. The advantages of the modification are illustrated through examples and reinforced through simulations. The adjustment is still novel even if attention is restricted to the profile likelihood. The Canadian Journal of Statistics 42: 544–562; 2014 © 2014 Statistical Society of Canada Résumé: Les paramètres d’un modèle sont souvent catégorisés comme nuisibles ou d’intérêt. À mesure que la structure des données devient plus complexe, la vraisemblance peut devenir incalculable ou sensible à des erreurs de spécification. La pseudo-vraisemblance et la vraisemblance composite ont été présentées comme des solutions dans ces situations. Les auteurs proposent un ajustement simple de ces fonctions de vraisemblance afin d’atténuer l’effet des paramètres nuisibles. Les avantages offerts par cette modification sont illustrés par des exemples et appuyés par des simulations. Cet ajustement est inédit même si les auteurs restreignent leur attention aux profils de vraisemblance. La revue canadienne de statistique 42: 544– 562; 2014 © 2014 Société statistique du Canada
منابع مشابه
On pseudolikelihood inference for semiparametric models with boundary problems
Consider a semiparametric model indexed by a Euclidean parameter of interest and an infinite-dimensional nuisance parameter. In many applications, pseudolikelihood provides a convenient way to infer the parameter of interest, where the nuisance parameter is replaced by a consistent estimator. The purpose of this paper is to establish the asymptotic behaviour of the pseudolikelihood ratio statis...
متن کاملIntegrated likelihoods in models with stratum nuisance parameters
Inference about a parameter of interest in presence of a nuisance parameter can be based on an integrated likelihood function. We analyze the behaviour of inferential quantities based on such a pseudolikelihood in a two-index asymptotics framework, in which both sample size and dimension of the nuisance parameter may diverge to infinity. We show that the integrated likelihood, if chosen wisely,...
متن کاملA Class of Pseudolikelihood Ratio Tests for Homogeneity in Exponential Tilt Mixture Models
Mixture models are commonly used in biomedical research to account for possible heterogeneity in population. In this paper, we consider tests for homogeneity between two groups in the exponential tilt mixture models. A novel pairwise pseudolikelihood approach is proposed to eliminate the unknown nuisance function. We show that the corresponding pseudolikelihood ratio test has an asymptotic dist...
متن کاملInformation and Asymptotic Efficiency of the Case-Cohort Sampling Design in Cox’s Regression Model
The efficiency of the maximum pseudolikelihood estimator and a number of improved estimators for the case-cohort sampling design in the proportional hazards regression model is studied. The asymptotic information for estimating the parametric regression parameter is calculated based on the effective score, which can be obtained by determining the component of the parametric score orthogonal to ...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کامل